Andrej Karpathy blog: Hi there, I’m a CS PhD student at Stanford. I’ve worked on Deep Learning for a few years as part of my research and among several of my related pet projects is ConvNetJS - a Javascript library for training Neural Networks. Javascript allows one to nicely visualize what’s going on and to play around with the various hyperparameter settings, but I still regularly hear from people who ask for a more thorough treatment of the topic. This article (which I plan to slowly expand out to lengths of a few book chapters) is my humble attempt. It’s on web instead of PDF because all books should be, and eventually it will hopefully include animations/demos etc.
My personal experience with Neural Networks is that everything became much clearer when I started ignoring...
Show More
Andrej Karpathy blog: Hi there, I’m a CS PhD student at Stanford. I’ve worked on Deep Learning for a few years as part of my research and among several of my related pet projects is ConvNetJS - a Javascript library for training Neural Networks. Javascript allows one to nicely visualize what’s going on and to play around with the various hyperparameter settings, but I still regularly hear from people who ask for a more thorough treatment of the topic. This article (which I plan to slowly expand out to lengths of a few book chapters) is my humble attempt. It’s on web instead of PDF because all books should be, and eventually it will hopefully include animations/demos etc.
My personal experience with Neural Networks is that everything became much clearer when I started ignoring full-page, dense derivations of backpropagation equations and just started writing code. Thus, this tutorial will contain very little math (I don’t believe it is necessary and it can sometimes even obfuscate simple concepts). Since my background is in Computer Science and Physics, I will instead develop the topic from what I refer to as hackers’s perspective.
Show Less
No comments yet. Be the first to comment!